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ABSTRACT

Recently, as an essential part of people’s daily life, clothingmatching

has gained increasing research attention. Most existing efforts focus

on the numerical compatibility modeling between fashion items

with advanced neural networks, and hence suffer from the poor

interpretation, which makes them less applicable in real world

applications. In fact, people prefer to know not only whether

the given fashion items are compatible, but also the reasonable

interpretations as well as suggestions regarding how to make the

incompatible outfit harmonious. Considering that the research line

of the comprehensively interpretable clothing matching is largely

untapped, in this work, we propose a prototype-guided attribute-

wise interpretable compatibility modeling (PAICM) scheme, which

seamlessly integrates the latent compatible/incompatible prototype

learning and compatibilitymodelingwith the Bayesian personalized

ranking (BPR) framework. In particular, the latent attribute

interaction prototypes, learned by the non-negativematrix factorization

(NMF), are treated as templates to interpret the discordant attribute

and suggest the alternative item for each fashion item pair.

Extensive experiments on the real-world dataset have demonstrated

the effectiveness of our scheme.
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Figure 1: Illustration of the task.
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1 INTRODUCTION

Nowadays, clothing matching has become an indispensable part of

people’s daily life, since a properly coordinated outfit can improve

one’s appearance greatly. However, not everyone is a natural-born

fashion stylist, and for those who lack the taste of aesthetics,

matching clothes and making proper outfits has become their

daily headache. Therefore, it is thus highly desirable to devise

an automatic clothing matching scheme to aid people in outfit

composition. Towards this end, three essential questions frequently

faced by people in clothing matching merit our special attention.

As shown in Figure 1, Q1: Whether the given fashion items are

compatible? Q2: What are the discordant components that result

in the incompatible matching? Q3: What are the alternative items

to transform the incompatible pairs to compatible ones? In fact,

the recent proliferation of many online fashion communities, such

as IQON1 and Chictopia2, contributing a large number of outfits

composed by fashion experts, has enabled researchers to tackle the

automatic clothing matching problem. Due to their huge success

in various domains, most of existing efforts employ deep learning

methods to learn effective representations of fashion items, based

on that they can measure the compatibility between fashion items.

1http://www.iqon.jp/.
2http://www.chictopia.com/.
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Nevertheless, as pure data-driven learning schemes, deep learning

methods suffer from the poor interpretability given that each

dimension of the learned representation cannot explicitly refer to an

intuitive semantic aspect of fashion items, causing the questionsQ2

and Q3 of requiring more result interpretations largely untapped.

Notably, although a few pioneer researchers have attempted to

tackle the question Q2 by enhancing the interpretability through

modeling the attribute-level (e.g. color and texture) compatibility

between fashion items [7], they cannot provide the comprehensive

interpretation due to the extremely limited attributes they adopt.

In this work, we aim to comprehensively tackle all the three

essential problems, namely, the compatibility determination between

fashion items, discordant component interpretation for incompatible

outfits, and alternative item suggestion towards making compatible

ones. We focus on devising a versatile attribute-wise interpretable

clothing matching scheme, since attributes are the most intuitive

semantic cues to characterize fashion items. However, fulfilling the

task in the attribute-wise manner is non-trivial due to the following

challenges. 1) As aforementioned, attribute plays a pivotal role in

both characterizing fashion items and interpreting the matching

results. However, most of existing benchmark datasets pertaining to

clothing matching lack the attribute ground truth for fashion items.

How to acquire the accurate fine-grained attribute representations

for the benchmark datasets poses a primary challenge for us. 2)

As the saying goes, things of one kind come together. Compatible

fashion itemsmay essentially follow certain underlying harmonious

attribute interaction prototypes, while the incompatible ones would

also share several unfavorable attribute compositions. For example,

{chiffon, pear-shaped, garden, beadings} tends to be a harmonious

attribute interaction prototype, while {boyfriend-style, silk lace

gauze, active wear, floral printing} can be an incompatible one.

Therefore, how to explore the latent compatible/incompatible

attribute interaction prototypes and hence facilitate the discordant

component interpretation is a crucial challenge. And 3) fashion

items can be featured by a number of attributes, ranging from

the length of trousers to the collar of the top, where each attribute

further involves a set of attribute values (e.g., long, short andmini for

the length attribute). Accordingly, the attribute interaction between

fashion items can be rather complicated. How to properly model the

complicated interactions among various attributes and distinguish

the discordance constitutes another challenge.

To address the aforementioned challenges, we propose a

prototype-guided attribute-wise interpretable compatibilitymodeling

scheme, termed PAICM, to jointly regularize the latent prototype

learning and compatibility modeling, as shown in Figure 2.

Without losing the generality, here we study the problem of

clothing matching between tops and bottoms. In particular, to

facilitate the matching result interpretation, the scheme first

extracts the semantic attribute representations for fashion items

with a set of advanced neural networks, where each network

is aligned to an attribute to ensure the quality of the attribute

representation. Notably, to enhance the portability of PAICM,

apart from our primary dataset adopted for clothing matching, we

introduce an auxiliary dataset of fashion items with rich attribute

annotations to pre-train the attribute classification networks.

Based on the learned attribute representations, on one hand, the

proposed scheme explores the latent compatible and incompatible

attribute interaction prototypes using the non-negative matrix

factorization (NMF) [17]. The learned prototypes are regarded

as the templates to guide the discordant attribute interpretation

and the alternative item suggestion. On the other hand, towards

compatibility modeling, the proposed scheme seeks the latent space

to accurately measure the compatibility between fashion items

using the multi-layer perceptron (MLP). Ultimately, the proposed

scheme seamlessly integrates the latent prototype learning and

compatibility modeling with the Bayesian personalized ranking

(BPR) framework [31], where the pairwise preferences between

attribute prototypes and fashion items can be adaptively coupled

and well exploited.

Our main contributions can be summarized in threefold:

• To the best of our knowledge, this is the first attempt to

comprehensively fulfil the automatic clothing matching task

by answering the three essential questions of the compatibility

determination, discordant component interpretation, and

alternative item suggestion.

• We propose a prototype-guided attribute-wise interpretable

compatibility modeling scheme PAICM, where the latent

compatible and incompatible prototype learning and compatibility

modeling is jointly regularized.

• Extensive experiments have been conducted on the real-world

dataset, which demonstrates the effectiveness of the proposed

scheme. As a byproduct, we released the codes, and involved

parameters to benefit other researchers3.

The remainder of this paper is structured as follows. Section 2

briefly reviews the related work. In Section 3, we detail the

proposed model. We present the experimental results and analyses

in Section 4, followed by our concluding remarks and future work

in Section 5.

2 RELATEDWORK

2.1 Fashion Analyses

In recent years, the huge economic value of the fashion market

has attracted many researchers’ attention. Increasing efforts have

been dedicated to the fashion domain, such as the fashionability

prediction [19, 33], fashion trending prediction [8, 46], clothing

retrieval [12, 24, 25] and compatibility modeling [9, 34, 42]. For

example, McAuley et al. [28] proposed a general framework to

model the human visual preference for a given pair of objects based

on the Amazon real-world co-purchase dataset. In addition, Song

et al. [35] investigated the problem of complementary fashion item

matching with a multi-modal dataset collected from Polyvore4.

Later, Lin et al. [20] further explored the user comments to

boost the performance of fashion item recommendation, where a

more comprehensive dataset ExpFashion was introduced. Although

existing researches have achieved compelling success, they mainly

focused on utilizing deep learning methods to represent fashion

items with the blurry semantic features, resulting in their poor

interpretability. To enhance the model interpretability, Feng

et. al. [7] proposed a partition embedding network to learn

3https://anonymity2019.wixsite.com/paicm/.
4Polyvore has been acquired by the global fashion platform Ssense in 2018.
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Figure 2: Illustration of the proposed scheme. We obtain the semantic attribute representations via the pre-trained attribute

classification network, based on which we employ the NMF to explore the latent compatible and incompatible attribute

interaction prototypes. Ultimately, we jointly regularize the latent prototype learning and compatibility modeling with the

BPR framework.

the embedding of each attribute and then model the attribute-

level compatibility between fashion items. Despite the promising

performance it accomplished, the attributes regarding the compatibility

of fashion items can be numerous yet they only adopted limited

ones, making the interpretation incomprehensive. Distinguished

from these studies, we aim to not only improve the interpretability

of the clothing matching in a comprehensive attribute-wise manner

but also facilitate the alternative item suggestion.

2.2 Matrix Factorization

As a numerical analysis method, matrix factorization (MF) is

widely applied in various research areas, such as the item

recommendation [11, 15, 38, 40] and information retrieval [26,

30, 37], due to its superior performance in discovering the latent

features between two entities (e.g., the user and item). In order

to effectively adapt to different tasks, several variants of MF

have been devised, such as the singular value decomposition

(SVD) [6], probabilistic matrix factorization (PMF) [29] and non-

negative matrix factorization (NMF) [17], and their efficiency

has been validated in various domains. For example, Sun et

al. [36] proposed a SVDNet to fulfil the retrieval task of person

re-identification (reID), where the SVD is employed for the

optimization of the deep representation learning process. In

addition, Kim et al. [14] presented a context-aware convolutional

matrix factorization (ConvMF) that integrates the convolutional

neural network (CNN) into the PMF in the context of document

context-aware recommendation. Besides, as a useful tool for

the sparse and meaningful feature extraction, NMF also drew

researchers’ attention. For example, Xu et al. [41] proposed a

document clustering method based on the NMF with the term-

document matrix. Furthermore, to forecast the fashion styles, Ziad

et. al. [46] employed the NMF to discover the latent clothing styles in

an unsupervised manner. Although the NMF has been successfully

applied to solve tasks like text clustering [41], fashion trending

prediction [46] and recommender systems [1], limited efforts have

been dedicated to the complementary clothing matching, which is

the major concern of our work.

3 METHODOLOGY

In this section, we first formally give the research problem

formulation, and then detail the proposed PAICM.

3.1 Problem Formulation

Formally, we first declare some notations used in this work. We

use bold capital letters (e.g., X) and bold lowercase letters (e.g., x)

to denote matrices and vectors, respectively. We employ non-bold

letters (e.g., x) to represent scalars and Greek letters (e.g., β) to
denote the parameters. If not clarified, all vectors are in the column

forms.
��A��

F
denotes the Frobenius norm of matrix A.

In the real-world clothing matching scenarios, users may not

only want to know whether the given fashion items are compatible

or not, but also expect to get advice on how to harmonize the

improper outfit. In this context, we aim to devise an attribute-

wise interpretable compatibility modeling scheme to explain the

underlying reasons why the given items are incompatible in

the attribute-wise manner and provide the potential attribute

manipulations to make compatible outfits. Assume that we have a

set of tops T = {t1, t2, · · · , tNt
} and bottoms B = {b1,b2, · · · ,bNb

},

where Nt and Nb denote the total number of tops and bottoms,
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respectively. Each item ti (bj ) is associated with an image with a

clear background, the textual description and structured category

labels. In this work, we characterize each fashion item with a set

of attributes (e.g., the color and category) A = {aq }
Q
q=1, where aq

is the q-th attribute and Q is the total number of attributes. Each

attribute aq is associated with a set of elements representing its

possible values Eq = {e1q , e
2
q , · · · , e

Mq

q }, where eiq refers to the i-th
element andMq is the total number of elements regarding aq . For
simplicity, we compile all Eq ’s in order and hence derive a unified

set of attribute elements E =
⋃Q
q=1 Eq = {e1, e2, · · · , eM }, where

M =
∑Q
q=1Mq . In addition, we have a set of positive top-bottom

pairs S = {(ti1 ,bj1 ), (ti2 ,bj2 ), · · · , (tiN ,bjN )} composed by fashion

experts, where N is the total number of positive pairs. Accordingly,

for each top ti , we can derive a set of positive bottoms B+
i = {bj ∈

B|(ti ,bj ) ∈ S}. Let si j denote the compatibility between the top

ti and bottom bj , based on which we can distinguish whether the

given fashion items are compatible or not.

3.2 Semantic Attribute Representation

As a matter of fact, the online fashion item is usually characterized

by a visual image, certain user-generated textual description

and structured category labels. In a sense, the visual image and

structured category labels can faithfully capture the essential

features of fashion items, such as the color, shape and category,

while the user-generated textual description may be unreliable

as it can be intrinsically noisy, not to mention the mendacious

ones edited by crafty sellers. Therefore, similar to the existing

work [46], we only exploit the reliable visual cues as well as the

structured category information tomodel the compatibility between

fashion items. Notably, existing efforts mainly adopt advanced deep

neural networks to learn the effective presentations for fashion

items and measure the compatibility owning to their compelling

success in various research tasks. Nevertheless, as a pure data-

driven learning scheme, deep neural network suffers from the poor

interpretability due to the fact that each dimension of the learned

representation cannot explicitly refer to the intuitive semantic

aspect of fashion items. Towards this end, we aim to learn the

meaningful representations for fashion items, whose dimensions

directly stand for the semantic attributes and hence enhance the

model interpretability.

On one hand, regarding the sophisticated visual signals, we argue

that taking advantage of the well pre-trained attribute classification

networks is the most natural and straightforward way to obtain

the interpretable semantic representations of fashion items. As to

ensure the performance of the attribute classification networks,

we align each attribute aq with a separate attribute classification

network hq . It is worth noting that as the category information

also contributes an essential attribute of fashion items, here we

have Q − 1 attributes characterized by the visual cues. We feed the

visual image Ii of the i-th top/bottom into these hq ’s, and obtain

the semantic attribute representations as follows,

f
q
i = hq (Ii |Θq ), q = 1, 2, · · · ,Q − 1, (1)

where Θq denotes the network parameter of hq and f
q
i ∈ RMq

is the network output of hq . The d-th entry in f
q
i refers to the

probability that the top ti presents the attribute element edq . In

particular, we denote fvi = [f1i ; f
2
i ; · · · ; f

Q−1
i ] as the final semantic

attribute representation of the i-th top/bottom derived from the

visual signals, where “;” is the cascading operation of vectors in the

vertical direction.

On the other hand, the intuitive nature of the structured

category information propels us to encode it directly with the

one-hot representation. Let fci stands for the one-hot semantic

attribute representation derived from the category context for

the i-th top/bottom. Ultimately, we concatenate the attribute

representations obtained from both sources and generate the final

semantic attribute representation fi = [fvi ; f
c
i ] for the i-th item.

3.3 Latent Compatibility Space

Apparently, it is not advisable to directly measure the compatibility

in the raw attribute space. Similar to [34], we assume that there is

a latent compatibility space that enables us to accurately model the

complicated attribute interactions and hence boost the compatibility

modeling performance. In this work, we resort to the MLP, which

has shown superior performance in various representation learning

tasks [21–23, 39]. In particular, we add K hidden layers over the

semantic attribute representation of the fashion item as follows,{
f
y
i0 = f

y
i ,

f
y

ik
= σ (W

y

k
f
y

i (k−1)
+ b

y

k
), k = 1, · · · ,K, y ∈ {t,b} ,

(2)

where f
y

ik
is the k-th layer hidden representation,W

y

k
and b

y

k
are

weight matrices and biases, respectively. t and b denote top and

bottom. σ : R �→ R is a non-linear function applied in an element-

wisemanner, wherewe choose the sigmoid functionσ (x ) = 1
1+e−x in

this work. The latent representation of the fashion item is defined

as the output of the K-th layer, i.e., f̃
y
i = f

y
iK

∈ RDl ,y ∈ {t,b},
where Dl denotes the dimension of the latent compatibility space.

Therefore, the compatibility between top ti and bottom bj can be

measured as follows,

si j = (f̃ti )
T f̃bj . (3)

In a sense, we can assume that the top-bottom pairs composed

by fashion experts are the positive (compatible) ones. However,

it may be too absolute to claim that the other fashion item

pairs are negative (incompatible), since they can be the potential

positive ones whose items may be paired later. In order to model

the implicit relations between tops and bottoms, we adopt the

BPR framework for its excellent performance on the implicit

preference modeling [4, 11]. In particular, we argue that as for

top ti , bottoms in the positive set B+
i are more compatible than

the other bottoms. Accordingly, we construct the training set

DS :=
{
(i, j,k)|ti ∈ T ,bj ∈ B+

i ∧ bk ∈ B \ B+
i

}
, where the triplet

(i, j,k) indicates that top ti goes better with bottom bj as compared

with bottom bk . According to [31], the objective function can be

written as follows,

Litem
bpr

=
∑

(i , j ,k )∈DS

−ln(σ (si j − sik )) +
λ

2
‖Ω‖2F , (4)

whereσ is the sigmoid function, λ is the non-negative hyperparameter

to avoid the overfitting and Ω denotes the set of parameters (i.e.,

W
y

k
’s and b

y

k
’s).
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Figure 3: Workflow of the attribute manipulation.

3.4 Prototype-guided Compatibility Modeling

Intuitively, compatible fashion items can essentially follow several

latent compatible attribute interaction prototypes, while the

incompatible ones would share certain unfavorable prototypes.

In a sense, each latent prototype can be characterized by a set of

attribute elements. For example, {jeans, boyfriend-style, ragged, street

fashion} tends to form a harmonious prototype, while {office lady,

holed, cartoon, tiered skirt} is more likely to refer to an unfavorable

one. Towards this end, we assume that there exists a set of latent

compatible/incompatible attribute interaction prototypes.

Owing to its superior capability of latent factor modeling [18],

we seek the latent attribute interaction prototypes under the non-

negative matrix factorization (NMF). To derive the latent attribute

interaction compatible prototypes, it is natural to resort to the set

of positive top-bottom pairs S. Here we define the data matrix

Gp = [g1, g2, · · · , gN ] ∈ R2M×N , where gn = [ftin
; fbjn

] ∈ R2M

denotes the semantic attribute representation of the n-th positive

top-bottom pair (tin ,bjn ).
According to NMF, we aim to solve the following objective,

min
P,Hp

��Gp − PHp

��2
F
,

s .t . P � 0,Hp � 0,
(5)

where P = [p1, p2, · · · , pLp ] ∈ R2M×Lp refers to the latent

basis matrix, each column of which corresponds to a compatible

prototype, and Lp represents the total number of the latent

prototypes. Hp ∈ RLp×N corresponds to the latent representation

matrix of the N top-bottom pairs regarding the basis compatibility

prototypes. In particular, pl ∈ R
2M denotes the l-th latent

compatible prototype, which can be rewritten as follows,

pl =

[
pt
l

pb
l

]
, (6)

where pt
l
∈ RM and pb

l
∈ RM can be treated as the semantic

attribute representations of the prototype top and bottom for pl .

Algorithm 1 Prototype-guided Compatibility Modeling.

Input: DS = {(i, j,k)}, μ, υ, λ, Lp , Lu
Output: Parameters Ω in MLP, parameters P, Hp , U and Hu in

NMF.

1: Initialize neural network parameters in MLP and NMF.

2: repeat

3: Randomly draw (i, j,k) from DS

4: Calculate l∗ and r∗ according to Eqn. (10).

5: Update Ω, P, Hp , U and Hu according to Eqn. (12).

6: until Converge

7: Identify the discordant attribute az
∗
for the given negative

top-bottom pair according to Eqn. (16)

8: Manipulate the discordant attribute representation and retrieve

the new fashion item.

In the same manner, we can also derive the latent incompatible

prototypes based on the set of negative top-bottom pairs (ti ,
bk )’s, where the bottom bk /∈ B+

i is randomly sampled for top

ti . Let Gu ∈ R2M×N be the data matrix comprising semantic

attribute representations of negative top-bottom pairs and U =

[u1, u2, · · · , uLu ] ∈ R
2M×Lu be the matrix of latent incompatible

prototypes, whereLu is the total number of incompatible prototypes,

and Hu ∈ RLu×N denotes the latent representation matrix of the

N negative top-bottom pairs in the prototype space. Similarly, we

represent the r -th latent incompatible prototype ur ∈ R2M as

follows,

ur =

[
utr

ubr

]
, (7)

where utr ∈ RM and ubr ∈ RM denote the semantic attribute

representations of the prototype top and bottom of ur . Ultimately,

we have the following NMF loss for the latent prototype learning,

Lnmf =
��Gp − PHp

��2
F
+
��Gu − UHu

��2
F
. (8)

It is intuitive that the top and bottom of one compatible prototype

should be more compatible than those of the incompatible ones.

Therefore, we define the intrinsic compatibility for each prototype

pl (ur ) as follows,

s
p

l
= (p̃t

l
)T p̃b

l
, sur = (ũtr )

T ũbr , (9)

where s
p

l
and sur are the intrinsic compatibility for the compatible

prototype pl and incompatible prototype ur , respectively. p̃
t
l
, p̃b

l
,

ũtr and ũbr are the hidden representations of pt
l
, pb

l
, utr and ubr ,

respectively, which can be acquired based on Eqn. (2).

To seamlessly integrate the latent prototype learning and

compatible modeling, for each sample (i, j,k), we particularly define
its most similar compatible and incompatible prototypes pl ∗ and

ur ∗ with the Euclidean distance, whose indexes l∗ and r∗ can be

derived as follows,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dp (i, j, l ) =

�����
[
fti
fbj

]
−

[
pt
l

pb
l

]�����
2

, du (i,k, r ) =

�����
[
fti
fb
k

]
−

[
utr
ubr

]�����
2

,

l∗ = argmin
l

dp (i, j, l ) , r∗ = argmin
r

du (i,k, r ).

(10)

In a sense, we expect that the intrinsic compatibility of the

compatible prototype pl ∗ should be higher than that of the
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Table 1: Examples of attributes and the corresponding

attribute elements.

Attributes Attribute Elements

type of trousers harem pants, straight pants

length of trousers three quarter pants, pirate shorts

type of clothes buttons single breasted, one button

fitness of clothes rectangle-shaped, hourglass-shaped

length of dresses below knee, above knee

type of dresses A-lined dress, pouf dress

style of clothes forest living style, boyfriend-style

texture of clothes contrast color, hollow

incompatible one ur ∗ . Therefore according to the BPR, we thus

have the following adaptive objective function,

L
proto

bpr
=

∑
(i , j ,k )∈DS

−ln(σ (s
p

l ∗
− sur ∗ )), (11)

where s
p

l ∗
and su

r ∗
can be obtained with Eqn. (9). Interestingly,

with Litem
bpr

and L
proto

bpr
, the compatibility modeling between

fashion items and the prototype learning can be mutually promoted.

Ultimately, we obtain the final objective function as follows,

L = Litem
bpr

+ μL
proto

bpr
+ υLnmf , (12)

where μ and υ are the non-negative trade-off hyperparameters to

weigh the different components of the objective function.

3.5 Interpretable Attribute Manipulation

In order to transform the incompatible fashion item pairs into the

compatible ones, we first employ the Lp compatible prototypes

as templates to identify the discordant attributes. In particular,

for the given negative (incompatible) top-bottom pair (ti ,bk ),
we particularly find the most similar compatible prototype pl ∗

according to Eqn. (10). For simplicity, we divide pl ∗ into Z parts as

follows,

pl ∗ =
[
p1
l ∗
; · · · ; p

Q

l ∗
; p

Q+1
l ∗

; · · · ; pZ
l ∗

]
, (13)

whereZ = 2Q . The firstQ parts refer to the attribute representations

of the top in prototype pl ∗ , while the lastQ parts correspond to that

of the bottom in pl ∗ . In the same manner, the negative top-bottom

pair (ti ,bk ) can be represented as follows,

gik =
[
fti ; f

b
k

]
=
[
g1
ik
; · · · ; g

Q

ik
; g

Q+1
ik

; · · · ; gZ
ik

]
. (14)

Moreover, we define the attribute-wise difference between (ti ,bk )
and pl ∗ as follows,

de (i,k, l
∗, z) =

��gz
ik

− pz
l ∗

��
2

Mz
, (15)

where de (i,k, l
∗, z) denotes the attribute difference between (ti ,bk )

and pl ∗ regarding the z-th attribute. We then identify the most

discordant attribute that causes the incompatibility as follows,

z∗ = argmax
z

de (i,k, l
∗, z). (16)

Thereafter, to suggest the alternative item and make the

compatible pair, we replace the attribute representation gz
∗

ik
of

Table 2: Performance of attribute representation learning.

Attribute Top Trousers Dress

length of upper-body clothes 0.7606 - -

type of trousers - 0.7233 -

part details of clothes 0.8462 0.8697 0.8181

type of clothes buttons 0.6742 - -

length of trousers - 0.7707 -

style of clothes 0.7698 0.7575 0.8325

fabric of clothes 0.8117 0.8738 0.8241

type of waistlines - 0.8171 0.7798

texture of clothes 0.7668 0.8170 0.7387

graphic elements of clothes 0.7433 0.8166 0.7741

length of dresses - - 0.8243

design of dresses - - 0.8446

length of sleeves 0.7975 - -

fitness of clothes 0.7135 - -

type of collars 0.7839 - -

type of dresses - - 0.7694

thickness of clothes 0.7668 0.8126 -

type of sleeves 0.7219 - -

Total 0.7873 0.8280 0.8083

(ti ,bk ) with pz
∗

l ∗
and hence obtain the manipulated semantic

attribute representation as follows,

ĝik =

⎧⎪⎪⎨⎪⎪⎩
[
f̂ti ; f

b
k

]
, if z∗ ≤ Q,[

fti ; f̂
b
k

]
, if z∗ > Q,

(17)

where f̂ti and f̂
b
k
are themanipulated semantic attribute representation

of top ti and bottom bk , respectively, using which we can retrieve

the new fashion items to make a compatible matching. In particular,

if the discordant attribute manipulation needs to be taken on the

top ti (i.e., z
∗ ≤ Q), we can retrieve new tops ti′ ’s by ranking

the Euclidean distance dp ’s between f̂ti and the semantic attribute

representations of training tops in the decent order. Otherwise, we

can retrieve new bottoms bk ′ ’s by ranking dp ’s between f̂b
k
and the

representations of training bottoms. The workflow of the attribute

manipulation is shown in Figure 3, and the algorithm is summarized

in Algorithm 1.

4 EXPERIMENT

To validate the effectiveness of the proposed model, we conducted

extensive experiments on the real-world dataset FashionVC by

answering the following questions:

• Does our PAICM outperform the state-of-the-art methods?

• What is the effect of NMF in the prototype-guided attribute

manipulation?

• Howdoes the proposed PAICMperform in the complementary

fashion item retrieval?

In this section, we first detail the experimental settings and then

illustrate the experimental results with the analyses on each above

research question.

Session 9A: Fashion Match SIGIR ’19, July 21–25, 2019, Paris, France

790



Table 3: Performance comparison among different

approaches in terms of AUC.

Approach AUC

POP 0.4206

RAND 0.5094

Bi-LSTM 0.5502

BPR-DAE 0.6026

ExIBR 0.6366

PAICM 0.7130

4.1 Experimental Settings

Dataset. To evaluate our PAICM, we adopted the public real-

world dataset FashionVC [35] consisting of 20, 726 outfits with

14, 871 tops and 13, 663 bottoms, composed by fashion experts.

Each fashion item is associated with a visual image, relevant

categories and the title description. In addition, to train the

attribute classification networks and obtain the semantic attribute

representations of fashion items, we utilized an auxiliary benchmark

dataset of DeepFashion [27], comprising 33, 881 fashion items,

each of which is labeled by 18 attributes with 303 attribute elements.

Table 1 shows several attribute examples and the corresponding

attribute elements. Due to the uneven distribution of the data, we

implemented the data augmentation for certain attribute classes

with limited samples by multiple operations (e.g., copy, rotation

and shift) with an integrated tool of Keras.

Attribute Representation Learning. Regarding the semantic

attribute representation learning, we adopted the architecture

similar to AlexNet [16] that consists of 5 convolutional layers

followed by 3 fully-connected layers. We randomly divided the

auxiliary dataset into two chunks: training set (80%) and testing set

(20%), and chose the widely-used cross-entropy loss to train all the

networks. We adopted the area under the ROC curve (AUC) [3] to

evaluate the performance of the attribute representation learning.

To gain more detailed insights, we further categorized fashion

items in DeepFashion into the three groups: tops, trousers and

dresses (skirts). Table 2 details the classification result of each

attribute, where the last row “Total” refers to the average AUC

weighted by the number of attribute elements. As can be seen,

the overall performance of attribute classification with respect to

AUC is satisfactory. Due to the fact that the auxiliary dataset lacks

the annotations for the color attribute, for each fashion item in

FashionVC, we extracted the color attribute based on the histogram

calculation in the HSV space and encoded it to an one-hot vector

as the color representation of the fashion item.

Parameter Tuning.We divided the positive pair set S into two

parts: the training set Strain (80%) and testing set Stest (20%). For

each positive pair (ti ,bj ), we randomly sampled three bottoms bk ’s
(bk /∈ B+

i ), and each bk corresponds to a triplet (i, j,k). We adopted

the AUC [32, 45] as the evaluation metric. For optimization, we

employed the stochastic gradient descent (SGD) [2]. In particular,

we applied a non-negative constraint in each iteration to optimize

NMF. We adopted the grid search strategy to determine the optimal

values on a set of validation data temporarily split from the Strain
for the regularization parameters (i.e., λ, μ and υ) among the values

{10r |r ∈ {−4, · · · ,−1}}, [0.2, 0.4, 0.6, 0.8] and [0.05, 0.1, 0.2, 0.3],

respectively. In addition, the number of hidden units and learning

0 10 20 30 40 50 60 70 80 90 100
0.68

0.69

0.70

0.71

0.72

A
U

C

Number of the Prototypes

Figure 4: Performance of PAICMwith respect to the number

of prototypes.

rate are searched in [128, 256, 512] and [0.0001, 0.0005, 0.001],

respectively. The proposed model is fine-tuned for 200 epochs,

and the performance on the testing set is reported. We empirically

found that the proposed model achieves the optimal performance

with K = 1 hidden layer of 256 hidden units.

4.2 On Comparison of Approaches (RQ1)

As for the compatibility modeling, we chose the following content-

based baselines to evaluate the proposed model.

• POP: We used the “popularity” of bottom bj to measure its

compatibility with top ti . Here the “popularity” is defined
as the number of tops that has been paired with bj in the

training set.

• RAND: We randomly assigned the compatibility scores of

si j and sik between items.

• Bi-LSTM: We chose the bidirectional LSTM model in [9]

which explores the outfit compatibility by sequentially

predicting the next item conditioned on previous ones. In

our context, we adapted Bi-LSTM to deal with an outfit

comprising of a top and a bottom.

• ExIBR: We extended the image-based recommendation

(IBR) method proposed in [28] to ExIBR to handle both the

visual data and the structured category label of fashion items.

• BPR-DAE: We selected the content-based neural scheme

introduced by [35] to jointly model the coherent relation

between different modalities of fashion items and the implicit

preference among items via a dual autoencoder network.

To compare all the approaches fairly, we utilized both the

visual image and category metadata in Bi-LSTM, ExIBR, BPR-

DAE and PAICM. Table 3 shows the performance comparison

among different approaches. As we can see, PAICM outperforms

all the other baselines, indicating the superiority of introducing the

semantic attribute representations to the compatibility modeling.

One possible explanation is that the compatibility modeling

task is indeed to model the complicated interactions among

various attributes of fashion items, and our semantic attribute

representation seems to be just task-oriented.

Moreover, as the prototype learning plays a pivotal role in our

PAICM, we particularly investigate the impact of the number of the

prototypes learned by the NMF on the performance of compatibility

modeling. For simplicity, we adopted the same number of the

compatible and incompatible prototypes, and varied that from

10 to 100 with a step of 10. Figure 4 shows the performance of

our PAICM with different numbers of prototypes. We found that
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white, black, college,
fresh, regular length,
regular thickness,
bow, …

coat, dress, silk lace
gauze, young adult,
western, pure color,
slim fit, …

buttons, pullovers,
blue, sweet, wool,
skirt, crewneck, thick,
red, …

shorts, forest living
style, garden, plicate,
beadings, chiffon,
pear-shaped, …

ragged, boyfriend-
style, street fashion,
jeans, rectangle-
shaped, …

coat, dress, casual,
Japan/Korean, wool,
long, long sleeves, V-
neck, …

office lady, sweet,
shirt, fresh, pants,
regular thickness,
above keen, …

street fashion, young
adult, pink, rivets,
western, slim fit, …

sportswear, chiffon,
bohemian, yellow,
skirt, floral printing,
numbers, …

shorts, coat, long
sleeves, irregular
hem, holed, V-neck,
chiffon, …

sweater, casual,
pear-shaped, silk,
bodycon, single-
colored, …

stripes, dress, casual,
lace, pullover dotted,
T-shirt, long sleeves,
black, …

Compatible Prototype Examples

Incompatible Prototype Examples

Figure 5: Illustration of the compatible and incompatible prototypes. We listed several notable attributes of the prototypes

according to their learned semantic representations.

the performance is relatively steady for the number of prototypes

ranging from 40 to 90, where 70 is the optimal number of prototypes.

This suggests that our model is not much sensitive to the number

of prototypes.

To obtain the deep insights, we illustrate several learned

compatible and incompatible prototypes with certain intuitive

top-bottom pairs in Figure 5, where for each prototype we list

the two most similar top-bottom pairs according to Eqn. (10). For

clear illustration, we further give several notable attributes for

each prototype based on their semantic representations. From

Figure 5, we observed that the latent compatible/incompatible

prototypes do share certain attribute interaction patterns. For

example, “white+black”, “coat+dress” and “colledge+bow” are the

compatible attribute interactions while “office lady+sweet” and

“street fashion+slim fit” are the incompatible ones. In addition, we

noticed that the learned compatible prototypes are reasonable and

compatible enough to be the guidance of the discordant attribute

identification and the alternative item suggestion for incompatible

top-bottom pairs.

4.3 On Prototype-guided Attribute
Manipulation (RQ2)

To quantitatively evaluate the effects of NMF in the prototype

learning, we comparedNMFwith K-means [10], themost commonly

used unsupervised clustering method [5] that is able to group

samples sharing the common characteristics together. In particular,

we utilized the K-means algorithm to divide our positive top-

bottom pairs into Lp clusters, and the center of each cluster is

treated as the learned compatible prototype. Then according to

Eqn. (10) and (16), we can find the discordant attribute and replace

it with the corresponding attribute representation of the most

similar compatible prototype to obtain the manipulated semantic

attribute representation. As our compatibility modeling scheme

PAICM is able to measure the compatibility between fashion items,

here we adopted the rate of the manipulated pairs with improved

compatibility as the evaluation metric. Formally, the rate is defined

as |M|/|N |, where N denotes the set of negative top-bottom

pairs determined by our PAICM model andM refers to the set of

negative pairs, whose compatibility get improved by the attribute

manipulation.

Figure 6 illustrates the performance comparison between NMF

and K-means with different numbers of compatible prototypes.

As can be seen, NMF consistently surpasses K-means in all

configurations, demonstrating the superiority of NMF in discovering

the latent prototypes. Moreover, we found that when the number

of the compatible prototype is 60, we can achieve the optimal

40 50 60 70 80 90
40

50

60

70

80

90

100
 NMF
 K-means

R
at

e 
(%

)

Number of the Prototypes

(60, 85.01)

Figure 6: Performance comparison between the NMF and

K-means regarding the rate of manipulated fashion item

pairs with improved compatibility.
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graphic elements of clothes category of clothes length of upper-body clothes

texture of clothes color of clothes length of trousers
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Figure 7: Illustration of the manipulated top-bottom pairs.

The descriptions below the pairs are the manipulated

incompatible attributes.

performance, where 85.01% of the incompatible top-bottom pairs

get the compatibility improvement after the attribute manipulation.

Overall, the performance is promising and validates the effectiveness

of PAICM in identifying the discordant attribute and giving the

reasonable alternative item suggestion. To intuitively reflect the

effect of the attribute manipulation, we illustrate several examples

of the manipulated top-bottom pairs in Figure 7. As we can see, the

slight attribute manipulation of the incompatible top-bottom pair

is able to not only improve the compatibility but also preserve the

original fashion styles, which can be easily accepted by people.

To comprehensively assess our model in attribute manipulation,

apart from the above objective evaluation, we further conducted

the subjective user study, where we invited 20 fashion-lovers

to complete the psycho-visual test over 11 randomly selected

incompatible top-bottom pairs. In particular, the attendees were

asked to answer 11 independent questions by choosing the more

compatible one between the original incompatible top-bottom

pair and the manipulated one. All questions are presented twice

to avoid the accident mistakes. The attendees taking part in the

psychophysical experiment consists of 6 males and 14 females. The

result of the psycho-visual test is shown in Table 4. We illustrate

the maximum, minimum and average support rates of the 11 top-

bottom pairs. As we can see, overall, the fashion-lovers supported

the manipulated top-bottom pairs rather than the original ones,

which is consistent with the above objective evaluation result.

4.4 On Fashion Item Retrieval (RQ3)

To assess the practical value of PAICM, we conducted experiments

on the complementary fashion item retrieval. Considering the fact

that it is time-consuming to rank all the bottoms for each top, we

Table 4: Support rate of fashion-lovers over the original and

manipulated top-bottom pairs.

Support Rate Original Manipulated

Average Support Rate 20.68% 79.32%

Max Support Rate 46.15% 100.00%

Min Support Rate 0.00% 53.85%

M
R

R

Number of Bottom Candidates

 RAND
 ExIBR
 BPR-DAE
 Bi-LSTM
 PAICM

(a) Observed testing tops

M
R

R

Number of Bottom Candidates

 RAND
 ExIBR
 BPR-DAE
 Bi-LSTM
 PAICM

(b) Unobserved testing tops

Figure 8: Performance of different models.

utilized the same strategy in [11] to feed each top ti appeared in

Stest as a query, and randomly selected T bottoms as the ranking

candidates with only one positive bottom. We fed the candidates

into the trained model to acquire their latent representations and

calculated the compatibility score si j according to Eqn. (3), based
on which we generated a ranking list of the bottoms for the given

top. In this work, we focused on the average position of the positive

bottom in the ranking list and thus adopted the mean reciprocal

rank (MRR) metric [13, 43, 44].

In total, there are 1, 954 unique tops in the testing set. Due to the

sparsity of the real-world dataset, 1, 262 (64.59%) tops never appear

in Strain . To comprehensively evaluate the proposed model, we

divided tops in the testing set into two ground: observed testing

tops and unobserved ones. As shown in Figure 8, PAICM shows

superiority over all the other baselines at different numbers of

bottom candidates in both scenarios, indicating the robustness and

effectiveness of PAICM in complementary fashion item retrieval.

5 CONCLUSION AND FUTUREWORK

In this work, we present a prototype-guided interpretable compatibility

modeling scheme, PAICM, which is capable of not only determining

the outfit compatibility, but also locating the discordance of

incompatible outfits as well as providing the alternative item

suggestion. We employed the NMF to discover the latent compatible

(incompatible) attribute interaction prototypes, whichwere regarded

as the templates to guide the discordant attribute interpretation

and alternative item suggestion. Extensive experiments have been

conducted on the real-world dataset and the promising empirical

results demonstrate the effectiveness of PAICM. In addition, we

found that the NMF has remarkable advantages of discovering

latent factors in the context of clothing matching. One limitation

of our work is that currently we only manipulated the discordant

attribute according to the learned prototype, but ignore the factor

of users’ personal preferences in clothing matching. Therefore, in

the future, we plan to explore the potential of the user context in

complementary clothing matching and attribute suggesting.
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